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independent components of C reduce from 108 to 48, 
which was the number obtained for the tensor b in 
the rotation-gradient theory. However, if we were to 
take into account the further restrictions implied by 
the relation (3.11) the number of independent 
components of C (or C) will be further reduced. A 
detailed analysis of all the constraints on C shows 
that only the six components C~223, CI1332, C!1132, 
C22331, C22231 and C33231 are independent. The other 
non-vanishing components are 

C11232 : _ C22131 = _2C13122 __. 2C23121 = _~CII 1223 

1 
C11233 = 2C23131 = - C33121 = -2C13123 --= -~C11332 

C11123 = - 2  C13121 = - Cl1132 

C22133 - - C33122 = - 2  C 2 3 , 3 2 -  = 2(?23123 = -~ C223311 

C22123 = - 2  C23122 = - C22231 

C33132 = - 2  C23133 = - C33231 

and those related to the above by the intrinsic sym- 
metry relation (3.3). It follows from the relations 
(3.21), (3.17), (3.10) and (2.8) (with the identification 
d = C )  that the activity tensor b of the rotation- 
gradient theory which conforms to the restrictions 
from considerations of the total energy has only six 
non-vanishing independent components [as against 
48 reported earlier (Bhagwat & Subramanian, 1986)] 
for the triclinic system and is related to the tensor G 
by the equation 

bijkp = 2[ Gpikj -- t~pj Gqikq q- elmpeikq Gqjml]. 

The quantities [b1331 4-b2332] and G3333 which govern 
the angle of rotation of a plane-polarized acoustic 

wave in the two descriptions respectively turn out to 
be proportional to the component C33231. This shows 
that even this restricted tensor b will lead to acoustical 
activity in all those crystal classes which were found 
acoustically active in either of the two earlier descrip- 
tions. In other words, the restricted theory still retains 
the essential ingredients of the general theory as far 
as the explanation of acoustical activity is concerned. 
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Abstract 

The temperature factors of Cd and Zn for h00 
reflexions calculated by numerical Fourier transfor- 
mation are compared with the temperature factors 
determined with the help of series expansion of the 
anharmonic term of the probability density function 
(p.d.f.). The anharmonic parameters used have been 
derived by least-squares fit of measured Bragg 

intensities in the framework of the anharmonic one- 
particle potential (OPP) model. For Cd a deviation 
of up to 7% is found for the results obtained for the 
symmetric part and up to 50% for the antisymmetric 
part of the temperature factor. It is shown that 
numerical Fourier transformation of the p.d.f., using 
the anharmonic parameters given in the literature for 
Zn, is not always possible, because the p.d.f, is diver- 
gent for some of these parameters. 
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Theory 

In this paper the anharmonic one-particle potential 
(OPP) formalism for the hexagonal structures Zn and 
Cd given by Merisalo & Larsen (1977) (hereafter 
ML77) was used. To reduce the number of degrees 
of freedom of the potential from about 10 23 to  3, the 
potential experienced by an atom in the OPP model 
is assumed to be independent of the motion of all 
other atoms of the lattice (Willis & Pryor, 1975). 

To allow for anharmonic motion the potential is 
expanded into a series up to fourth order. Because 
of the 6m2 site symmetry of the Zn atom in the h.c.p. 
lattice the number of third-order parameters reduces 
to one and the number of fourth-order parameters 
reduces to three, and the potential is given by (ML77) 

V(n) = V 0 -~-/./2(320K20 +/300) + u 3 ct33 K33 

-it- U4(OI~40K40 "3t-/320K20 + % 0 ) .  ( 1 )  

Vo, a u, /30, Yu are parameters of the potential, u is 
the vector of displacement from the equilibrium posi- 
tion with u 2 2 = ul + u2+ u 2 and u; are the components 
of u parallel to [210], [010], [001] respectively. The 
K u are symmetry-adapted harmonics given by 

K2o = 0"5(3u 2 -  u2)/u 2 (2a) 

K33 = ( u31 - 3 u, u22) / u 3 ( 2b ) 

g4o=O.125(35u4-30u2u2+3u4)/u4. (2c) 

In the classical regime the probability density func- 
tion (p.d.f.) of an atom, defined as the probability of 
finding the atom in the volume element d3u when it 
is displaced by u, is obtained from the potential 
according to the Boltzmann distribution 

with 

p . d . f . = e x p [ - V ( u ) / ( k T ) ] / Z  (3) 

oo 

Z = I  I I e x p E - V ( u ) / ( k T ) ] d u ,  du2du3, (4) 
--OO 

where k is the Boltzmann constant, T is the absolute 
temperature and Z is the partition function. 

The temperature factor is the Fourier transform of 
(3) (Willis, 1969): 

oo 

T(q) = I  I IP.d.f. xexp( iqn)  duldu2du3,  (5) 
--oo 

where q is the scattering vector. 
Because the Fourier transform of the anharmonic 

p.d.f, given in (3) cannot be written as a closed 
algebraic expression, the anharmonic part of the p.d.f. 
is expanded into a series (Willis, 1969) to make 
analytical integration, i.e. Fourier transformation, 
possible. 

p.d.f. = {exp [ -  V(n)harm/(kT)] 

x [ 1 -  V(u)anharm/(kT)+... ]}/Z'. (6) 

V(l l )har  m and V(U)anhar  m a r e  the harmonic and the 
anharmonic part of the potential given in (1), and Z '  
is the corresponding partition function. 

The analytical expression for the temperature fac- 
tor, given by the Fourier transform of (6), is called 
T(q)seri~s in the following, in contrast to T(q)n~m, 
which is evaluated by numerical integration. 

To make numerical evaluation of the Fourier trans- 
form (5) possible, the integration is confined to the 
finite range occupied by the atom (Matsubara, 1975). 

For the evaluation of T(q)n~m, the p.d.f, was 
divided into its even and odd parts P.d.f.,ven and 
P-d.f.odd- 

p.d.f.~v~n = {exp [-uE(aEoK2o +/300)/(kr) 

- -  U 4 ( t ~ 4 0 K 4 0  - ~ - / 3 2 0 / ( 2 0 +  "Yoo)/(kr)] 

xcosh[(u3333Ka3)/(kr)]}/Z " (7a) 

p.d.f.odd = {exp [-u2(a2oK2o +/300)/(kr) 

- u4(a4oK4o +/32oK2o + "Yoo)/(kr)] 

x ( -1)s inh[(u3333K33) / (kr )]} /Z  " (7b) 

with 

u I 

Z"=[. [. [ . e xp[ -V(u ) / ( kT ) ]du ,  du2du3. (7c) 
--U! 

With the approximations 
U I 

rc(q)num=[[. [.p.d.f.ev,,Cos(qu)duldu2du3 (8a) 
--U! 

Ul 

T,,(q)num=IIIp.d.f.oddisin(qu)du, du2du3 (8b) 
--U I 

where To(q) is the centrosymmetric (real) and T,(q) 
is the antisymmetric (imaginary) part of the tem- 
perature factor, with i = x / ( - 1 ) ,  the corresponding 
temperature factor T(q)num is given by 

r(q)nu m [ 2 2 1/2 Tc(q)n~m+ (8c) = Ta(q)num] • 

uz represents the limits of integration, introduced 
under the assumption that a physically meaningful 
p.d.f, has to be convergent and therefore can be 
approximated by zero outside a finite range of u. 

Comparison of T(q)num and T(q)serie s for Cd and Zn 

With the Fourier transform of (6) given by ML77 
[formula (6) in their paper] the temperature param- 
eters an, /3u and 3'o can be determined by a least- 
squares fit of calculated to observed intensity data. 
For the different models of refinement used by several 
authors, different sets of parameters were obtained. 
A collection of these parameters, a description of the 
models used and a detailed discussion of the reliabil- 
ity of the temperature parameters are given by Ross- 
manith (1984). Parameters which are used in this 
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Merisalo & Larsen (1979), 
model 3 

Table 1. Anharmonic temperature parameters of Zn and Cd used in this paper 

R e f e r e n c e  azo floo ~33 0/40 f120 "~00 
(10-,9 j ,~-2) (10-,9 j t~-2) (10-,9 j A-s )  (10-19 j/~k-4) (10-,9 j /~ -4)  (10-,9 j /~ -4 )  

Rossmanith Cd -0.6057 (10) !.1293 (10) 0.079 (99) 0.415 (133) -2.008 (154) 1.843 (99) 

Zn -1.109 (10) 1.841 (10) -1.80 (30) 0-25 (28) 7.36 (28) -6.27 (14) 

Radiation 

Mo Ka 

Neutrons 

paper are listed in Table 1. The parameters for Cd 
were evaluated without extinction correction, using 
the Bragg intensities of Rossmanith (1984) in a 
(sin 0)/A range from 0.41 to 0.79 A-~ 

For Zn the parameters of model 3 given by Merisalo 
& Larsen (1979) are tabulated. The radiations used 
in the measurements are also given in Table 1. 

/I 

2/ 

o / s  

i i i i i i i 

0.0 0.5 1.0 1,5 

SIN{THETA)/LANBOA [A"] 

Fig. 1. The temperature factors of h00 reflexions for Cd in a 
(sin 0) /h  range up to 1.55/1-~. T~(q) has to be multiplied by 
0"01. Curve 1: T¢(q)~i~; 2: T , . (q )~ ;  3: T~(q)~ri~; 4: T,(q)~um; 
and 5: T~(q),~ m with a~3= 1 .7ass=0.1343x 10-19j/~-3.  

POF 

/ 2  

I I I 

-0,8 0,0 0,8 

u ,.s [A] 

Fig. 2. The p.d.f. [formula (3)] for Cd. Curve 1 in the u~ direction, 
2 in the u 3 direction, u, given in ,~. 

Table 2. The partition function Z" evaluated with the 
anharmonic parameters for Z1a, for increasing values 

of ut 

U I ( A )  Z "  

±0.05 0.0009 
±0" 10 0-0053 
+0"!5 0-0120 
±0"20 0-0185 
+0"25 0"0241 
±0-30 0.0315 
±0"35 0"2567 
±0.40 4023.6786 

(a) Cd 

In Fig. 1 the results for Tc.a(q)num and Tc, a(q)series , 
both calculated with the parameters for Cd in Table 
1, are shown. Fig. 2 represents the p.d.f. [formula (3)] 
used in the evaluation of rc, a(q)num. The Tc, a(q)num 
were calculated repeatedly with increasing values for 
the ut. The range of integration was assumed to be 
appropriate when, within the limits of computational 
precision (64 bits per real variable), identical results 
were obtained for successive calculations. 

The values of u~ in the u,,  u2 and u3 directions 
never exceed 1.2 A, whereas the p.d.f, becomes negli- 
gibly small for u values greater than 0.4 A in the u~ 
and u2 directions and 0.7 A in the u3 direction, as 
can be seen in Fig. 2. 

In the region of (sin O)/h between 0.4 and 1.3 ,~ -] 
(Fig. 1), which is essential for temperature parameter 
determination, T~,a(q)num and Tc,,(q)serie~ differ con- 
siderably, T~,~(q),um being smaller for all (sin 0)/A 
values than Tc,~(q)se~ie~. The deviation is more remark- 
able for Ta(q) (up to 50%) than for To(q) (up to 
7%). The series expansion (6) underestimates t~33 , as 
can be seen from Fig. 1, where T,(q) . . . .  calculated 
with a third-order parameter a~3 (a~3=l '7a33 = 
0.1343 x 10-~9 J ,~-3), is also given. 

(b) Zn 

For the calculation of T(q)nu m with the parameters 
for Zn given in Table 1 the same procedure as for 
Cd was used. But, as can be seen from Table 2, the 
partition function [formula (7c)] does not converge 
with increasing range of integration. Inspection of 
the p.d.f, used in the calculations explains this 
behaviour. As can be seen in curve 1 of Fig. 3, the 
non-standardized P.d.f.even [numerator in (Ta)] can- 
not be approximated by zero in the surroundings of 
the equilibrium position of the atom. The p.d.f, given 
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in (3) is physically meaningless when it is used with 
the parameters for Zn. 

The p.d.f, defined by (6), whose Fourier transform 
is T(q)series, is convergent (Fig. 3, curve 2) and there- 
fore a useful p.d.f. 

The one-particle potential 

If one starts from formula (3) the one-particle poten- 
tial can be calculated as 

V(u) = - k T  In (p.d.f. x Z) (9) 

(Zucker & Schulz, 1982). 
Insertion of the p.d.f. [Fig. 3, curve 2; formula (6)] 

in (9) results.in the potential presented in curve 2 of 
Fig. 4, whereas curve 1 of Fig. 4 shows for comparison 
the potential given by (1). For both figures the param- 
eters for Zn of Table 1 were used. In the region 
lul--3(u2) ,/2 (three times the root mean square 
displacement, r.m.s.d., with ( 2  1/2_ ul,2) - 0 . 1 0 6 3 A ) ,  
where the p.d.f, is significantly greater than zero, the 

PDF 

/ 1  

I I I I I I 

-0 ,8  0o0 0°8 

ul[g] 

Fig. 3. The  p.d.f,  o f  Zn. C u r v e  1: the n o n - s t a n d a r d i z e d  p.d.f.eve, 
[ f o r m u l a  ( 7 a ) ]  in the ul d i rec t ion ,  ui given in/~,. C u r v e  2: p.d.f.  
defined in formula (6) in the u. direction, u t given in/~. 

v( u ) Bo-"J] 

0 .4  

0 .3  

o.2 2 ~  

1 

1 i 

- 0 , 4  - 0 . 2  0 ,0  0 ,2  0 .4  

u I[A] 

Fig. 4. The potential of Zn in the u~ direction (/~,). Curve 1: formula 
(1); curve 2: formula (9). u, given in/~,. 

Table 3. The potentials Vl(u), V2(u), the values of  
V(u)anharm/(kT) and the errors E for one, two and 

three times the r.m.s.d. 

U x ( A )  VI(U)* V2(u)* V(u)anharm/(kT ) E(%)  
Cd -0.3480¢ 0.2141 0.5073 0.9997 99.93 

-0.2324 0.0851 0.0860 0.1908 2.07 
-0.1162 0.0198 0-0198 0.0104 0.01 

0-1162 0.0200 0-0200 0.0165 0.01 
0.2324 0.0871 0.0885 0.2395 3.37 
0-3348t 0-2012 0.4571 0.9993 99.81 

Zn -0.3189 0-2001 0.2140 -1.0698 28.99 
-0.2126 0.1054 0.1055 -0.0697 0.23 
-0.1063 0.0280 0.0280 0.0222 0-02 

0.1063 0.0236 0.0238 -0.0840 0.33 
0.2126 0.0708 0.0817 -0.9193 23.46 
0.3189 0.0833 0.1786 -3.9371 90.37 

* V,(u): Potential calculated with formula (1), V2(u): potential calculated 
with formula (9), both multiplied by 10 -~9 J. 

t Maximal possible value for u~ < 3 times r.m.s.d. (see text). 

two potentials (Fig. 4) differ appreciably. It has to be 
concluded that the potential of curve 2 does not 
approximate the potential of curve 1 and vice versa. 
Therefore, in the case of Zn, the anharmonic param- 
eters O:33 , O~4o , ~20 and %0, evaluated from a truncation 
of(3) by a least-squares fit of calculated and measured 
Bragg intensities, are no longer identical with the 
parameters of the potential in (1). 

Discussion 

In the OPP model of Willis (1969) it is assumed that 
the anharmonic potential V(U)anharm is much smaller 
than kT, and that therefore [ V ( u ) a n h a r m / ( k T ) ]  2 and 
higher-order terms are negligible in (6). But for large 
values of u, V ( U ) a n h a r  m is always larger than kT. 
However, in a real crystal the probability that u 
exceeds a certain limiting value can be approximated 
by zero. Tanaka & Marumo (1983) therefore proposed 
to judge the validity of the Willis treatment of anhar- 
monicity from the V(u)anharm/(kT ) value at a u value 
equal to the r.m.s.d, of the atom which is calculated 
from the harmonic temperature factor. In Table 3 the 
potentials V(u) defined in (1) and (9) are given 
together with V(u)anharm/(kT) for ul=+(u~) 1/2, 
±2(u2x) 1/2 and +3(u2) 1/2, where (u2~) 1/2 is the r.m.s.d. 
in the basal plane of the hexagonal crystals of Zn 
(given by Merisalo & Larsen, 1979) and Cd. The 
percentage error E of the approximation exp ( x ) -  
1 +x,  with x = -  V(u)anharm/kT~ is tabulated in the 
fifth column of Table 3. 

In the case of Cd the error of the approximation 
for u~ = one r.m.s.d, is much less than 1%, reaching 
up to about 100% for Ul ~< three times the r.m.s.d. For 
greater or smaller values of u than those given in 
Table 3, the p.d.f, defined in (6) is very small but 
negative and the potential given by (9) is not defined. 

In the case of Zn the error reaches about 29% in 
the negative ut direction and 90% in the positive u~ 
direction. 
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Therefore, it has to be 'concluded that judgement 
of the validity of the approximation at Ul equal to 
one r.m.s.d, is not sufficient. An interval of at least 
three times the r.m.s.d, should be taken into consider- 
ation. 

If large anharmonic effects are supposed, even 
greater regions in u have to be considered, because 
of the deformation of the normal distribution of the 
harmonic p.d.f. 
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Abstract 

Many-beam diffraction effects in non-centrosym- 
metric crystals have been studied with emphasis on 
three-beam interactions and determination of three- 
phase structure invariants in electron diffraction 
experiments. The effective structure factor has been 
determined both by numerical many-beam calcula- 
tions and from the second Bethe approximation. The 
dependence of this factor on the phase invariant, the 
excitation errors and the magnitude of the structure 
factors involved has been discussed in detail. From 
the values of the effective structure factors at sym- 
metrical positions on each side of a three-beam condi- 
tion an asymmetry ratio is introduced. By a com- 
parison of the observed variation in this ratio with 
theoretical profiles, it has been shown that the magni- 
tude of three-phase invariants can be determined in 
the non-centrosymmetric case. This method may in 
principle be applied in any type of electron or X-ray 
three-beam experiments where variations in the 
effective structure factor are projected out. An 
example from electron channelling patterns is given. 

Introduction 

The structure-factor phase problem is central in all 
crystallographic diffraction studies, and various 
methods are used to handle it. In X-ray structure 
determination using direct methods phases are 
usually estimated with some probability by statistical 
methods from relations between structure-factor 

* Present address: SINTEF, Division of Applied Physics, N-7034 
Trondheim, Norway. 

0108-7673/88/040558-05503.00 

amplitudes (e.g. Woolfson, 1987). One direct way, 
however, to solve the problem is to utilize the intensity 
anomalies observed in dynamical many-beam diffrac- 
tion experiments. Here additional information is 
available compared with standard experiments. This 
concerns in principle both the magnitudes of the 
structure factors and the three-phase structure 
invariants. 

In many-beam investigations a perturbed two- 
beam, or two-Bloch-wave, point of view has often 
proved to be successful. On this basis the effective 
structure factor has been introduced, and a theoretical 
background for obtaining structure-factor phase 
information has been established. It is clear that three- 
phase invariants, in principle, can be determined from 
any type of electron or X-ray three-beam experiment 
where the effective structure factor, i.e. the effective 
dispersion surface gap width, is projected out. In 
practice this possibility is now well established for 
the centrosymmetric case. 

Dependence of the observed intensity anomalies 
on the various parameters in mainly centrosymmetric 
crystals has been discussed in non-systematic many- 
beam electron diffraction cases by, for example, 
Kambe (1957), Gj0nnes & H0ier (1971), Gj0nnes 
(1981) and Marthinsen & H0ier (1986). The X-ray 
case has been discussed by Post (1979, 1983), Chap- 
man, Yoder & Colella (1981), Marthinsen (1981), 
Thorkildsen & Mo (1982), Chang (1982, 1986), 
Juretschke (1982, 1986), Hfimmer & Billy (1982, 
1986), H0ier & Marthinsen (1983), Thorkildsen 
(1987) and Marthinsen & H0ier (1987). 

In the present studies we shall focus on the determi- 
nation of effective structure factors and a new method 
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